Unit 22: Electronic Circuits and Devices

Unit code: F/615/1496
Unit level: 4
Credit value: 15

Introduction

Electronics is all around us today: in our homes, the workplace, cars and even on or in our bodies. It’s hard to believe that it was only in 1947 that the transistor was developed by American physicists John Bardeen, Walter Brattain, and William Shockley. The invention of the transistor paved the way for cheaper radios, calculators and computers.

This unit introduces students to the use of electronics manufacturers’ data to analyse the performance of circuits and devices, the operational characteristics of amplifier circuits, the types and effects of feedback on a circuit performance, and the operation and application of oscillators. They will also be introduced to the application of testing procedures to electronic devices and circuits, and use the findings of the tests to evaluate their operation.

Among the topics included in this unit are: power amplifiers, class A, B and AB; operational amplifiers, inverting, non-inverting, differential, summing, integrator, differentiator; types such as open, closed, positive and negative feedback; frequency, stability, frequency drift, distortion, amplitude, wave shapes and testing procedures.

On successful completion of this unit students will be able to determine the operational characteristics of amplifier circuits, investigate the types and effects of feedback on an amplifier’s performance, examine the operation and application of oscillators and apply testing procedures to electronic devices and circuits.

Learning Outcomes

By the end of this unit students will be able to:

1. Determine the operational characteristics of amplifier circuits.
2. Investigate the types and effects of feedback on an amplifier’s performance.
3. Examine the operation and application of oscillators.
4. Apply testing procedures to electronic devices and circuits.
Essential Content

LO1 Determine the operational characteristics of amplifier circuits

Operational characteristics:

- Power amplifiers: class A, B and AB
- Operational amplifiers: inverting, non-inverting, differential, summing, integrator, differentiator, comparator, instrumentation, Schmitt trigger, active filters
- Gain, bandwidth, frequency response, input and output impedance
- Distortion and noise

LO2 Investigate the types and effects of feedback on an amplifier’s performance

Types and effects:

- Types including open, closed, positive and negative feedback
- Effect of feedback on gain, bandwidth, distortion, noise, stability, input and output impedance

LO3 Examine the operation and application of oscillators

Operation and application:

- Types of oscillators such as Wien bridge, Twin-T, R-C ladder, L-C coupled, transistor, operational amplifier, crystal
- Frequency, stability, frequency drift, distortion, amplitude and wave shapes

LO4 Apply testing procedures to electronic devices and circuits

Testing procedures:

- Measuring performance, using practical results and computer simulations
- Voltage gain, current, bandwidth, frequency response, output power, input and output impedance
- Distortion and noise

Devices to test:

- Semiconductors
- Integrated circuits
- Amplifiers
- Oscillators
- Filters
Power supplies
Integrated circuit (IC) voltage regulators
Combined analogue and digital IC’s

Component manufacturer’s data:
Specifications, manuals and circuit diagrams

Use of testing equipment:
Meters, probes and oscilloscopes
Signal generators and signal analysers, logic analysers
Virtual test equipment
Learning Outcomes and Assessment Criteria

<table>
<thead>
<tr>
<th>Pass</th>
<th>Merit</th>
<th>Distinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1 Determine the operational characteristics of amplifier circuits</td>
<td>P1 Describe the types of amplifiers available and their applications</td>
<td>D1 Assess the results obtained from the application of practical and virtual tests on amplifier circuits studied</td>
</tr>
<tr>
<td>M1 Explain the results obtained from applying practical tests on an amplifier’s performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2 Examine the different performance characteristics of types of amplifier</td>
<td>M2 Perform practical tests to show the effect of feedback on an amplifier’s performance</td>
<td></td>
</tr>
<tr>
<td>D2 Evaluate the results of practical and virtual tests to analyse the effect of feedback on an amplifier’s performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3 Examine the types of feedback available and their effect on the amplifier’s performance</td>
<td>P4 Describe a circuit which employs negative feedback</td>
<td>P5 Examine types of available oscillators and their applications</td>
</tr>
<tr>
<td>M3 Assess the performance characteristics of types of oscillators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO2 Investigate the types and effects of feedback on an amplifier’s performance</td>
<td>P6 Select suitable electronic devices and their parent circuits and identify the appropriate manufacturer’s data sheets</td>
<td>D3 Analyse the results obtained from applying practical and virtual tests on oscillators studied</td>
</tr>
<tr>
<td>P7 Interpret relevant information from manufacturer’s data when testing electronic devices and circuits</td>
<td>P8 Select suitable electronic devices and their parent circuits and identify the appropriate manufacturer’s data sheets</td>
<td></td>
</tr>
<tr>
<td>LO3 Examine the operation and application of oscillators</td>
<td>P9 Interpret relevant information from manufacturer’s data when testing electronic devices and circuits</td>
<td>M4 Perform tests on electronic devices and circuits, recording results and recommending appropriate action</td>
</tr>
<tr>
<td>P10 Select suitable electronic devices and their parent circuits and identify the appropriate manufacturer’s data sheets</td>
<td>P11 Interpret relevant information from manufacturer’s data when testing electronic devices and circuits</td>
<td>D4 Analyse and compare the results obtained from applying practical and virtual tests on devices and circuits studied</td>
</tr>
</tbody>
</table>
Recommended Resources

Textbooks

Websites

www.electronics-tutorials.ws Electronic Tutorials
 Amplifiers
 (Tutorials)

www.learnabout-electronics.org Learn About Electronics
 Amplifiers
 (Tutorials)

www.learnabout-electronics.org Learn About Electronics
 Oscillators
 (Tutorials)

www.electronics-tutorials.ws Electronic Tutorials
 Oscillators
 (Tutorials)

http://learn.mikroe.com/ Mikro Elektronika
 Introduction to checking componants
 (E-Book)

Links

This unit links to the following related units:

Unit 43: Machines and Drives